COMBINATORICA Bolyai Society – Springer-Verlag

THE CLIQUE COMPLEX AND HYPERGRAPH MATCHING

ROY MESHULAM*

Received June 14, 1999

The width of a hypergraph \mathcal{F} is the minimal $t=w(\mathcal{F})$ for which there exist $F_1, \ldots, F_t \in \mathcal{F}$ such that for any $F \in \mathcal{F}$, $F_i \cap F \neq \emptyset$ for some $1 \leq i \leq t$. The matching width of \mathcal{F} is the minimal $t=mw(\mathcal{F})$ such that for any matching $\mathcal{M} \subset \mathcal{F}$ there exist $F_1, \ldots, F_t \in \mathcal{F}$ such that for any $F \in \mathcal{M}$, $F_i \cap F \neq \emptyset$ for some $1 \leq i \leq t$. The following extension of the Aharoni-Haxell matching Theorem [3] is proved:

Let $\{\mathcal{F}_i\}_{i=1}^m$ be a family of hypergraphs such that for each $\emptyset \neq I \subset [m]$ either $mw(\bigcup_{i\in I}\mathcal{F}_i) \geq |I|$ or $w(\bigcup_{i\in I}\mathcal{F}_i) \geq 2|I|-1$, then there exists a matching F_1,\ldots,F_m such that $F_i\in\mathcal{F}_i$ for all $1\leq i\leq m$.

This is a consequence of a more general result on colored cliques in graphs. The proofs are topological and use the Nerve Theorem.

1. Introduction

Let $\mathcal{F} \subset 2^X$ be a hypergraph on a finite ground set X. The width of \mathcal{F} is the minimal $t = w(\mathcal{F})$ for which there exist $F_1, \ldots, F_t \in \mathcal{F}$ such that for any $F \in \mathcal{F}$, $F_i \cap F \neq \emptyset$ for some $1 \leq i \leq t$.

A matching in \mathcal{F} is a subhypergraph $\mathcal{M} \subset \mathcal{F}$ such that $F \cap F' = \emptyset$ for all $F \neq F' \in \mathcal{M}$. The matching width of \mathcal{F} is the minimal $t = mw(\mathcal{F})$ such that for any matching $\mathcal{M} \subset \mathcal{F}$ there exist $F_1, \ldots, F_t \in \mathcal{F}$ such that for any $F \in \mathcal{M}$, $F_i \cap F \neq \emptyset$ for some $1 \leq i \leq t$.

Let $\{\mathcal{F}_i\}_{i=1}^m$ be a family of hypergraphs. A system of disjoint representatives (SDR) of $\{\mathcal{F}_i\}_{i=1}^m$ is a matching F_1, \ldots, F_m such that $F_i \in \mathcal{F}_i$ for

Mathematics Subject Classification (1991): 05D05, 05D15, 05E25

^{*} Supported by the Israel Science Foundation.

 $1 \le i \le m$. Aharoni and Haxell [3] have recently proved the following remarkable extension of Hall's matching theorem:

Theorem 1.1. If $\{\mathcal{F}_i\}_{i=1}^m$ satisfies $mw(\cup_{i\in I}\mathcal{F}_i) \geq |I|$ for all $I \subset [m]$, then $\{\mathcal{F}_i\}_{i=1}^m$ has an SDR.

Another closely related result of Aharoni and Haxell [4] is the following

Theorem 1.2. If $\{\mathcal{F}_i\}_{i=1}^m$ satisfies $w(\cup_{i\in I}\mathcal{F}_i)\geq 2|I|-1$ for all $I\subset [m]$, then $\{\mathcal{F}_i\}_{i=1}^m$ has an SDR.

A common generalization of theorems 1.1 and 1.2 was obtained by Aharoni and Chudnovsky [2]:

Theorem 1.3. Let $1 \le d \le m$. Suppose $\{\mathcal{F}_i\}_{i=1}^m$ satisfies $w(\cup_{i \in I} \mathcal{F}_i) \ge 2|I|-1$ if $|I| \le d$, and $mw(\cup_{i \in I} \mathcal{F}_i) \ge |I|$ if |I| > d. Then $\{\mathcal{F}_i\}_{i=1}^m$ has an SDR.

Theorems 1.1 and 1.3 are proved using the Sperner Lemma and rely on the existence of special triangulations of the simplex. Aharoni [1] noted that the method of [3] shows that if for any $\emptyset \neq I \subset [m]$ the matching complex of $\bigcup_{i \in I} \mathcal{F}_i$ is (|I|-2)-connected then $\{\mathcal{F}_i\}_{i=1}^m$ has an SDR.

In this note we use another topological approach to prove the following extension of Theorem 1.3 conjectured in [2].

Theorem 1.4. Let $\{\mathcal{F}_i\}_{i=1}^m$ be a family of hypergraphs such that for each $\emptyset \neq I \subset [m]$ either $mw(\cup_{i \in I} \mathcal{F}_i) \geq |I|$ or $w(\cup_{i \in I} \mathcal{F}_i) \geq 2|I| - 1$, then $\{\mathcal{F}_i\}_{i=1}^m$ has an SDR.

Theorem 1.4 is a special case of a result on colored cliques in graphs. Let G = (V, E) be a simple graph. Let $\Gamma(v)$ denote the set of neighbors of a vertex $v \in V$, and G[A] the induced graph on a subset of vertices $A \subset V$. The join of two simplicial complexes K and L is denoted by K * L. For $0 \le i \le t$ let K_i consist of two isolated points a_i and a'_i , then $S^t = K_0 * \dots * K_t$ is the octahedral t-dimensional sphere. The 1-dimensional skeleton of S^t is denoted by $(S^t)^{(1)}$.

A graph G = (V, E) has property P(l,t) if there exists an $A \subset V$ such that:

- (i) $\cap_{i=1}^{l} \Gamma(v_i) \cap A \neq \emptyset$ for any $v_1, \dots, v_l \in V$.
- (ii) G[A] does not contain $(S^t)^{(1)}$ as an induced subgraph. We shall also say that G satisfies P(l,t) with respect to A.

Remarks.

(a) We note two choices of parameters which will be relevant to Theorem 1.4: If G satisfies P(l,0) with respect to A, then A does not contain an induced S^0 i.e. A is a clique. On the other hand, G satisfies property $P(l,\infty)$ iff $\bigcap_{i=1}^{l} \Gamma(v_i) \neq \emptyset$ for any $v_1, \ldots, v_l \in V$.

(b) Let $\mathcal{F} \subset 2^X$ be a hypergraph, possibly with multiple edges. The disjointness graph $G_{\mathcal{F}} = (V, E)$ associated with \mathcal{F} has vertex set $V = \mathcal{F}$ and $\{F, F'\} \subset \mathcal{F}$ forms an edge if $F \cap F' = \emptyset$. Since a matching in \mathcal{F} corresponds to a clique in $G_{\mathcal{F}}$ it follows that $mw(\mathcal{F}) > r$ iff $G_{\mathcal{F}}$ satisfies P(r, 0). Similarly $w(\mathcal{F}) > r$ iff $G_{\mathcal{F}}$ satisfies $P(r, \infty)$.

Let $V = \bigcup_{i=1}^{m} V_i$ be a partition of the vertices of a graph G into non-empty sets. A clique $\sigma \subset V$ is *colored* if $\sigma \cap V_i \neq \emptyset$ for all $1 \leq i \leq m$. For integers $i \geq 1$ and $i \geq 0$ let $\kappa(l,t) = \max\{l-t, \lfloor \frac{l}{2} \rfloor\}$. Our main result is a sufficient condition for the existence of colored cliques in G:

Theorem 1.5. If for any $\emptyset \neq I \subset [m]$ there exist l_I, t_I such that $G[\cup_{i \in I} V_i]$ satisfies $P(l_I, t_I)$ and $\kappa(l_I, t_I) \geq |I| - 1$ then G contains a colored clique.

Theorem 1.5 \Rightarrow **Theorem 1.4.** Let \mathcal{F} denote the disjoint union of the \mathcal{F}_i 's, and let $G_{\mathcal{F}} = (V, E)$ with the partition $V = \bigcup_{i=1}^m V_i$ where $V_i = \mathcal{F}_i$. If $\emptyset \neq I \subset [m]$ then either $mw(\bigcup_{i \in I} \mathcal{F}_i) \geq |I|$ or $w(\bigcup_{i \in I} \mathcal{F}_i) \geq 2|I| - 1$. It follows from the remarks above that $G[\bigcup_{i \in I} V_i]$ satisfies P(l,t) where (l,t) is either (|I|-1,0) or $(2|I|-2,\infty)$. Since $\kappa(l,t) = |I|-1$ in either case, it follows by Theorem 1.5 that G contains a colored clique. Therefore $\{\mathcal{F}_i\}_{i=1}^m$ has an SDR.

The proof of Theorem 1.5 is topological and uses the clique complex of a graph. In Section 2 we discuss a version of the Nerve Theorem which is our main technical tool. In Section 3 we relate property P(l,t) to the homology of the clique complex. The proof of Theorem 1.5 is completed in Section 4.

2. The Nerve Theorem

For a finite simplicial complex X, let $H_j(X)$ $(\tilde{H}_j(X))$ denote the (reduced) j—th simplicial homology of X with coefficients in some fixed field \mathbb{F} . The j—dimensional skeleton of X is denoted by $X^{(j)}$. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be a finite family of subcomplexes of X such that $\bigcup_{i \in I} U_i = X$. For $\sigma \subset I$ let $U_{\sigma} = \bigcap_{i \in \sigma} U_i$. The nerve of \mathcal{U} is the simplicial complex $N = N(\mathcal{U})$ on the vertex set I whose simplices are all $\sigma \subset I$ such that $U_{\sigma} \neq \emptyset$. The basic form of Leray's Nerve Theorem asserts that if U_{σ} is contractible for any $\sigma \in N$ then X is homotopy equivalent to N (see also [6]). For more refined versions and their combinatorial applications see Björner's survey [5]. We shall need the following homology variant of the Nerve Theorem. For completeness we include a short proof based on a standard application of the Leray spectral sequence (see e.g. [7]).

Theorem 2.1. If $\tilde{H}_j(U_{\sigma}) = 0$ for all $\sigma \in N^{(k)}$ and $0 \le j \le k - \dim \sigma$, then

- (i) $\tilde{H}_j(X) \cong \tilde{H}_j(N)$ for $0 \leq j \leq k$.
- (ii) If $H_{k+1}(N) \neq 0$ then $H_{k+1}(X) \neq 0$.

Proof. Let $\{E_r\}$ denote the cohomology spectral sequence of the cover \mathcal{U} and let $C^*(N)$ be the cochain complex of the nerve N. Let $\varphi_p: C^p(N) \to \bigoplus_{\sigma \in N^{(p)}} H^0(U_\sigma) = E_1^{p,0}$ denote the natural diagonal injection. The assumption $\tilde{H}^0(U_\sigma) = 0$ whenever $\dim \sigma \leq k$ implies that φ_p is an isomorphism for $0 \leq p \leq k$. It follows that $E_2^{p,0} \cong H^p(N)$ for $0 \leq p \leq k$. Since $E_1^{p,q} = \bigoplus_{\sigma \in N^{(p)}} H^q(U_\sigma) = 0$ for $q \geq 1$ and $p+q \leq k$ we conclude that $H^p(X) \cong E_2^{p,0} \cong H^p(N)$ for $0 \leq p \leq k$ and $E_\infty^{k+1,0} = E_2^{k+1,0}$.

To prove (ii) note that since φ_k is an isomorphism, it follows that φ_{k+1}^* : $H^{k+1}(N) \to E_2^{k+1,0}$ is injective. Therefore $H^{k+1}(N) \neq 0$ implies $E_\infty^{k+1,0} = E_2^{k+1,0} \neq 0$ and so $H^{k+1}(X) \neq 0$.

3. Homology of the Clique Complex

The Clique Complex of a graph G = (V, E) is the simplicial complex X(G) on the vertex set V whose simplices are all cliques $\sigma \subset V$.

Proposition 3.1. Let $l \ge 1$ and $t \ge 0$. If G satisfies P(l,t) then $\tilde{H}_j(X(G)) = 0$ for $0 \le j \le \kappa(l,t) - 1$.

Proof. For $v \in V$ let $\Gamma'(v) = \Gamma(v) \cup \{v\}$ and $U_v = X(G[\Gamma'(v)])$. Suppose G satisfies P(l,t) with respect to $A \subset V$ and let $Z = \bigcup_{v \in A} U_v \subset X(G)$. If $\tau = \{u_0, \ldots, u_r\} \in X(G)$ and $r \leq l-1$ then there exists a $v \in \cap_{i=0}^r \Gamma(u_i) \cap A$, hence $\tau \subset U_v$. It follows that $Z \supset X(G)^{(l-1)} \supset X(G)^{(\kappa(l,t)-1)}$. It therefore suffices to show that $\tilde{H}_j(Z) = 0$ for $0 \leq j \leq \kappa(l,t) - 1$.

Let N denote the nerve of the cover $\{U_v\}_{v\in A}$ of Z. Note that if $\sigma = \{v_0, \ldots v_p\} \subset A$ forms a clique in G then any clique τ in $G[\cap_{i=0}^p \Gamma'(v_i)] = G'$ is contained in the clique $\sigma \cup \tau \subset G'$, hence $U_{\sigma} = X(G')$ is a cone over σ and is therefore contractible.

Since G does not contain an induced $(S^t)^{(1)}$ for $t \ge |V|/2$ it suffices to prove the proposition for finite t. We apply induction on t. If t=0 then A is a clique, hence by the preceding remark U_{σ} is non-empty and contractible for any $\sigma \subset A$. It follows that N is the simplex on A hence by Theorem 2.1 $\tilde{H}_*(Z) \cong \tilde{H}_*(N) = 0$.

Suppose $t \geq 1$. Then $\kappa(l,t) \leq l-1$. Hence if $0 \leq p \leq \kappa(l,t)$ and $\sigma = \{v_0,\ldots,v_p\} \subset A$ then $\bigcap_{i=0}^p \Gamma'(v_i) \cap A \neq \emptyset$. It follows that $U_{\sigma} = X(G[\bigcap_{i=0}^p \Gamma'(v_i)]) \neq \emptyset$, therefore N contains the $\kappa(l,t)$ -th skeleton of the simplex on A and so $\tilde{H}_j(N) = 0$ for $0 \leq j \leq \kappa(l,t) - 1$.

In order to show $\tilde{H}_j(Z) = 0$ for $0 \le j \le \kappa(l,t) - 1$, it therefore suffices, by Theorem 2.1, to verify that the cover $\{U_v\}_{v \in A}$ of Z satisfies $\tilde{H}_j(U_\sigma) = 0$ for any $0 \le p \le \kappa(l,t) - 1$, $\sigma = \{v_0, \ldots, v_p\} \subset A$ and $0 \le j \le \kappa(l,t) - 1 - p$.

If σ is a clique then U_{σ} is contractible and we are done. Otherwise $p \geq 1$ and there exist two vertices, say v_0 and v_1 , such that $\{v_0, v_1\} \not\in E$. Let $V' = \cap_{i=0}^p \Gamma'(v_i)$, G' = G[V'] and $A' = A \cap V'$. Clearly G[A'] does not contain an induced $(S^{t-1})^{(1)}$, and for any l-p-1 vertices $u_1, \ldots, u_{l-p-1} \in V'$, $\cap_{j=1}^{l-p-1} \Gamma(u_j) \cap A' \supset \cap_{j=1}^{l-p-1} \Gamma(u_j) \cap \cap_{i=0}^p \Gamma(v_i) \cap A \neq \emptyset$. It follows that G' satisfies P(l-p-1,t-1) with respect to A'. Therefore by induction $\tilde{H}_j(U_{\sigma}) = \tilde{H}_j(X(G')) = 0$ for $0 \leq j \leq \kappa(l-p-1,t-1) = \max\{l-t-p,\lfloor \frac{l-p-1}{2} \rfloor\} \geq \kappa(l,t) - p$, hence $\tilde{H}_j(U_{\sigma}) = 0$ for $0 \leq j \leq \kappa(l,t) - 1 - p$.

Remarks.

a) The following examples show that Proposition 3.1 is in a sense sharp. Let $0 \le t \le k$ and let $V = \{a_i, a_i'\}_{i=0}^{k-1} \cup \{b_i, b_i'\}_{i=0}^{t-1}$. For $0 \le i \le t-1$ let K_i denote the (1-dimensional) simplicial complex consisting of the two edges $\{a_i, b_i\}$ and $\{a_i', b_i'\}$. For $t \le i \le k-1$ let K_i consist of the two isolated points a_i and a_i' . Consider the join $K = K_0 * \dots * K_{k-1}$ and let $G = (V, E) = K^{(1)}$ be its 1-dimensional skeleton. Let $A = \{a_i, a_i', b_i, b_i'\}_{i=0}^{t-1} \cup \{a_i\}_{i=t}^{k-1}$.

Claim 3.2. G satisfies P(k+t-1,t) with respect to A.

Proof. We first show that if $C \subset V$ with |C| = k + t - 1, then $\bigcap_{c \in C} \Gamma(c) \cap A \neq \emptyset$. Indeed, if $|C \cap \{a_i, a_i', b_i, b_i'\}| \leq 1$ for some $0 \leq i \leq t - 1$, e.g. $C \cap \{a_i, a_i', b_i\} = \emptyset$, then $a_i' \in \bigcap_{c \in C} \Gamma(c) \cap A$. Otherwise $|C \cap \{a_i, a_i', b_i, b_i'\}| \geq 2$ for all $0 \leq i \leq t - 1$ hence $|C \cap \{a_i, a_i'\}_{i=t}^{k-1}| \leq |C| - 2t = k - t - 1$. It follows that $C \cap \{a_i, a_i'\} = \emptyset$ for some $t \leq i \leq k - 1$, hence $a_i \in \bigcap_{c \in C} \Gamma(c) \cap A$.

We next show that G[A] does not contain an induced octahedral t-sphere. Assume to the contrary that $C \subset A$ satisfies |C| = 2t + 2 and $G[C] \cong (S^t)^{(1)}$. Let $C_0 = C \cap (\{a_i,b_i\}_{i=0}^{t-1} \cup \{a_i\}_{i=t}^{k-1})$ and $C_1 = C \cap (\{a_i',b_i'\}_{i=0}^{t-1} \cup \{a_i\}_{i=t}^{k-1})$. Both C_0 and C_1 are cliques in G[C], hence $|C_0|, |C_1| \le t + 1$. Since $2t + 2 = |C| = |C_0 \cup C_1|$ it follows that $|C_0| = |C_1| = t + 1$, $C_0 \cap C_1 = \emptyset$ and $C \cap \{a_i\}_{i=t}^{k-1} = \emptyset$. Therefore there exists an $0 \le i \le t - 1$ such that $C_0 \supset \{a_i,b_i\}$. But this is a contradiction since an octahedral sphere does not contain an edge $\{u,v\}$ with $\Gamma'(u) = \Gamma'(v)$.

Now X(G) = K is homotopic to S^{k-1} hence $\tilde{H}_{k-1}(X(G)) \neq 0$. It follows that the assumption P(k+t,t) in Proposition 3.1 cannot be replaced by P(k+t-1,t) when $0 \leq t \leq k$.

b) The following result can be proved along the lines of Proposition 3.1 by applying a relative version of the Nerve Theorem.

Proposition 3.3. If G satisfies $P(2k-1,\infty)$ with respect to $A \subset V$ then $H_j(X(G),X(G[A])) = 0$ for $0 \le j \le k-1$. In particular $H_{k-1}(X(G[A])) = 0$ implies $\tilde{H}_j(X(G)) = 0$ for $0 \le j \le k-1$.

4. Colored cliques

Proof of Theorem 1.5. By assumption $G = G[\cup_{i=1}^m V_i]$ satisfies P(l,t) for some pair (l,t) such that $\kappa(l,t) \geq m-1$. Hence $H_{m-2}(X(G)) = 0$ by Proposition 3.1. For $1 \leq i \leq m$ let $W_i = \cup_{j \neq i} V_j$ and $Y_i = X(G[W_i])$. If G contains no clique v_1, \ldots, v_m with $v_i \in V_i$ then $X(G) = \cup_{i=1}^m Y_i$. Let $0 \leq p \leq m-2$, then for any $\sigma = \{i_0, \ldots, i_p\} \subset [m]$ there exists a pair (l,t) (depending on σ) such that $G[\cup_{j \notin \sigma} V_j]$ satisfies P(l,t) and $\kappa(l,t) \geq m-p-2$. Applying Proposition 3.1 it follows that $Y_{\sigma} = \cap_{i \in \sigma} Y_i = X(G[\cup_{j \notin \sigma} V_j])$ satisfies $\tilde{H}_j(Y_{\sigma}) = 0$ for $0 \leq j \leq m-3-\dim \sigma$. The cover $\mathcal{Y} = \{Y_i\}_{i=1}^m$ of X(G) therefore meets the conditions of Theorem 2.1 with k=m-3. Since $H_{m-2}(X)=0$ it follows by 2.1(ii) that $H_{m-2}(N(\mathcal{Y}))=0$. But $N(\mathcal{Y})$ is clearly the (m-2)-skeleton of the (m-1)-simplex on the vertex set [m], hence $H_{m-2}(N(\mathcal{Y})) \cong \mathbb{F}$, a contradiction.

References

- [1] R. Aharoni: Private communication.
- R. Aharoni and M. Chudnovsky: Special triangulations of the simplex and systems of disjoint representatives, submitted.
- [3] R. Aharoni and P. Haxell: Hall's Theorem for hypergraphs, *J. Graph Theory*, **35** (2000), 83–88.
- [4] R. Aharoni and P. Haxell: Systems of disjoint representatives, preprint.
- [5] A. BJÖRNER: Topological methods, in: Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, Eds.), 1819–1872, North-Holland, Amsterdam, 1995.
- [6] J. FOLKMAN: The homology groups of a lattice, J. Math. Mech., 15 (1966), 631–636.
- [7] P. J. HILTON and S. WYLIE: Homology Theory: An Introduction to Algebraic Topology, Cambridge University Press, New York, 1960.

Roy Meshulam

Department of Mathematics, Technion, Haifa 32000, Israel meshulam@math.technion.ac.il